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Abstract

Two new concepts for molecular solids, `local similarity'
and `boundary-preserving isometry', are de®ned math-
ematically and a theorem which relates these concepts is
formulated. `Locally similar' solids possess an identical
short-range structure and a `boundary-preserving
isometry' is a new mathematical operation on a ®nite
region of a solid that transforms mathematically a given
solid to a locally similar one. It is shown further that the
existence of such a `boundary-preserving isometry' in a
given solid has in®nitely many `locally similar' solids as a
consequence. Chemical implications, referring to the
similarity of X-ray powder patterns and patent registra-
tion, are discussed as well. These theoretical concepts,
which are ®rst introduced in a schematic manner, are
proved to exist in nature by the elucidation of the crystal
structure of some diketopyrrolopyrrole (DPP) deriva-
tives with surprisingly similar powder patterns.
Although the available powder patterns were not
indexable, the underlying crystals could be elucidated
by using the new technique of ab initio prediction of
possible polymorphs and a subsequent Rietveld re®ne-
ment. Further ab initio packing calculations on other
molecules reveal that `local crystal similarity' is not
restricted to DPP derivatives and should also be
exhibited by other molecules such as quinacridones.
The `boundary-preserving isometry' is presented as a
predictive tool for crystal engineering purposes and
attempts to detect it in crystals of the Cambridge
Structural Database (CSD) are reported.

1. Introduction

The structural similarity between two crystals composed
of different but basically isometric molecules has been
discussed in terms of various concepts such as
isomorphism, isotypism, isostructuralism, homo-
structuralism etc. (KaÂ lmaÂn et al., 1993, and references
therein; Rutherford, 1997). This diversity of concepts is
further enlarged by the addition of further quali®ers
such as `approximate' (e.g. approximate isomorphism)
or `main-part' (e.g. main-part isostructuralism). In this
article we will introduce another similarity concept
termed `local similarity' or, for reasons discussed later,

`synthomorphism', which refers to a special class of
molecular solids. In view of the many existing similarity
concepts the reader may well ask whether a new concept
is necessary at all. We will show in the following that the
new class of molecular solids (i.e. we intend to also treat
systems which are not crystals in the strict mathematical
sense) cannot be described properly by the existing
concepts. After introducing the concepts of `local simi-
larity' and `boundary-preserving isometry' in a general
manner, the relation between `locally similar solids' and
their X-ray powder patterns will be discussed. This is, in
fact, a reversal of the chronology of events (mainly for
didactical reasons) since these studies began with the
discovery of pigment crystals, composed of different
molecules possessing practically identical X-ray powder
patterns. Only after elucidating some of these crystal
structures by computational methods based on ab initio
crystal structure predictions, the new structural concepts
were born.

This article deals with practically oriented subjects
related to chemical solids and materials design, the
underlying concepts are, however, purely mathematical.
These concepts, termed `local similarity' and `boundary-
preserving isometry' are, to the best of our knowledge,
new in the domain of mathematical crystallography. To
underline the mathematical nature of these concepts
and their independence of chemistry, we have chosen a
schematic, non-chemical presentation using `pre-
Columbian motifs' like drafts for their introduction.
This, we hope, will free the reader from any chemical
ballast at the beginning and will allow him to focus his
attention on simple three-dimensional geometry.

2. Local similarity and boundary-preserving isometries

Let us begin with a simple schematic example shown in
Fig. 1: given three different three-dimensional objects
(`molecules') composed of a common central part
(indicated by the `T'-shaped geometrical form in Fig. 1)
and a combination of two different substituents. They
are referred to in Fig. 1 (top) as `molecules' a, b and c.
These three-dimensional geometrical objects (or mole-
cules) give rise to two three-dimensional crystals
(assume for simplicity, that the third crystallographic
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axis is perpendicular to the drawing plane), indicated in
Fig. 1 as `crystals' (I) and (II). Crystal (I) contains only
molecule a and crystal (II) contains molecules b and c in
a 1:1 proportion. The unit cells are indicated by the grey
background and the cell dimension of (II) in the hori-
zontal direction is exactly twice the corresponding cell
length of (I). A careful inspection of the schematic
crystals shown in Fig. 1 reveals that the two crystals have
a very similar three-dimensional packing. The contacts
between the `atoms', indicated schematically in Fig. 1 by
the position of the edges of the geometrical objects, are
identical in both crystals. We now pose three questions
to be answered in the following discussion.

(i) Are the two crystals isomorphous?
(ii) Can the two crystals be classi®ed as isostructural?
(iii) Does there exist any geometrical operation,

which relates (I) to (II) and vice versa?
The two molecular crystals are not isomorphous since
there is no possibility for an isomorphic substitution.
The shape of the molecules is too different and there is
no reason to assume that parts in (I), consisting of whole
molecules, can be replaced by parts of (II), consisting of
whole molecules, without introducing large defects.

Concerning isostructuralism things are a little bit
more complicated. We will adopt the terminology of
KaÂ lmaÂn et al. (1993). According to their approach, the
degree of similarity between two crystals is described in
terms of several continuous descriptors of isostructur-
ality. The two descriptors we consider as most important
are

� � �a� b� c�=�a0 � b0 � c0� ÿ 1; �1�

where a, b, c and a0, b0, c0 are the orthogonalized lattice
parameters of the related crystals, and

Ii�n� � j����Ri�2=n�1=2j � 100; �2�
where n is the number of distance differences (�Ri)
between the crystal coordinates of equivalent atoms
within the same section of the asymmetric unit of the
related structures. Another descriptor related to the
`packing coef®cient increment' has been introduced
earlier by KaÂ lmaÂn et al. (1991) but, as stressed by
Rutherford (1997), unfortunately omitted from the 1993
paper and will not be discussed in this article. The
molecular isometricity index, Ii(n*) (KaÂ lmaÂn et al., 1993)
should be mentioned at this point as well. It has the
same mathematical form as (2), but is related to the
superimposed molecules. A prerequisite for using the
isostructurality indices Ii(n) or Ii(n*) is the de®nition of
sets of equivalent atoms in the two crystals.

A reasonable calculation of the similarity indices (1)
and (2) for the case presented in Fig. 1 is possible if we
introduce some modi®cations, which are consistent with
the idea of similarity de®nition. Rather than using the
lattices given we allow the usage of any multiple cell [in
our case two unit cells of (I)], which minimizes �. Thus,
the � index will be exactly 0. Extending the de®nition of
Ii(n) to the whole unit cell (rather than the asymmetric
unit) now allows the calculation of Ii(n), since a 1-to-1
correspondence exists between the atoms of (I) (now
using the double cell as shown in Fig. 1) and (II). The
value of the isostructurality index for the case presented
in Fig. 1 depends on the relative population of atoms in
the central common part of the molecules. If the

Fig. 1. A simpli®ed scheme to
illustrate the new similarity
concept discussed in this article.
Shown is the packing of irregular
three-dimensional geometrical
objects termed molecule a, b and
c (top), which possess a common
central part (here a `T'-shaped
body) and combinations of two
different substituents. The object
molecule a forms a three-dimen-
sional periodic solid termed
crystal (I), the objects molecules
b and c form crystal (II). The third
dimension extends in the perpen-
dicular direction of the drawing
plane. The unit cells are symbo-
lized by a grey background.
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majority of atoms populate the substituents rather than
the central part, then just over half the equivalent atoms
in the crystals have exactly the same coordinates, i.e.
�Ri in (2) will be 0 and just under half the equivalent
atoms have completely different coordinates. In that
case the isostructurality index Ii(n) will be approxi-
mately 65%, which is in our opinion de®nitely too low to
accurately re¯ect the degree of similarity between the
crystals. To summarize the answer to question (ii): after
introducing some modi®cations to the mathematical
de®nition of isostructurality indices, it is possible to
calculate these indices for the presented case. However,
the isostructurality index Ii(n) might be too low to
accurately re¯ect the degree of similarity between the
given crystals.

Before proceeding to an answer to the third question
posed above, we will de®ne the concept of `locally
similar crystals' or `synthomorphic crystals'. Any crystal
can be characterized independently of a unit-cell choice
or a coordinate system by the list of all interatomic
distances between element pairs and their relative
frequency of occurrence. Thus, we have separate lists of
CÐC distances, CÐN distances and so on. In practice
(Karfunkel & Leusen, 1992) the distances are truncated
at a certain distance value, R, and the lists of interatomic
distances and their frequency of occurrence are
presented by histograms, where distance ranges rather
than distances are used. An example of such a histogram
is shown in Fig. 2 and can be presented numerically as a
(non-square) matrix, termed in this article the `radial
distribution matrix' of a crystal, truncated at the distance
R.

De®nition 1. Two crystal structures containing different
molecules are locally similar by a degree R (R being a
distance in AÊ ) if the corresponding radial distribution
matrices truncated at the distance R are identical and if

the radial distribution matrices truncated at a distance
greater than R are different.

It should be emphasized that De®nition 1 is an
operational de®nition associated with a simple algo-
rithm. For two crystals with speci®ed atomic coordinates
one can easily calculate the radial distribution matrices.
Each column of these matrices corresponds to a distance
range (e.g. column 47 in both matrices corresponds to
distances between 7.1 and 7.2 AÊ ). The columns of the
two matrices are compared until non-equal columns are
reached. The middle of the distance range associated
with the ®rst non-equal column is the degree of local
similarity, R, in De®nition 1. The calculation is inde-
pendent of atom numbering, de®nition of equivalent
atoms, de®nition of molecules etc., which are needed in
the de®nitions of isostructurality.

In other words, two crystals are locally similar if they
are indistinguishable as long as only distances below a
certain distance threshold, R, are taken into account.
Thus, the two schematic crystals shown in Fig. 1 are
locally similar to a certain degree R (not speci®ed in this
®ctive case any further).

The answer to question (iii) posed above is rather
surprising and unexpected: the two crystals shown in Fig.
1 are related by a geometrical operation, termed here-
after a `boundary-preserving isometry', which will now
be explained in detail. An isometric operation is a
geometric operation, like a common symmetry opera-
tion, which leaves distances invariant. In the present
context the isometric operation is applied only to a
subregion of the (in®nite) crystal. In Fig. 3 some
examples of crystal subregions are shown schematically
(slices, cylinders and spheres). These subregions are
®nite in one (slice), two (cylinder) or three (sphere)
dimensions.

Fig. 2. A schematic presentation of
the radial distribution function of
a crystal. A radial distribution
function (in this article) repre-
sents all the interatomic distances
and their relative frequencies of
occurrence. For practical purposes
the distances are truncated at a
certain cut-off distance. For each
pair of elements a histogram is
de®ned. The x direction corre-
sponds to interatomic distances,
the z direction corresponds to the
relative frequency of these
distances in the crystal. The
various chemical element pairs
are positioned in an arbitrary
manner along the y direction. A
matrix, termed the radial distribu-
tion matrix, presents the set of
histograms for numerical
purposes. Notice also the trunca-
tion at a speci®ed distance.
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The crucial point is that these regions are further
subdivided into a boundary region (termed hereafter
simply as `boundary') and an interior region (termed
hereafter simply as `interior' and symbolized by the
different shadings in Fig. 3). Owing to the boundary,
there is no contact between the interior and the rest of
the crystal.

De®nition 2. An isometric operation applied to a
subregion of a given crystal, composed of boundary and
interior, is a `boundary-preserving isometry' if:

(i) The boundary is mapped onto itself.
(ii) The isometric operation is not a symmetry

operation of the crystal.

The fact that the boundaries are mapped onto them-
selves [point (i) of De®nition 2] means that the rest of
the crystal (not affected by the isometric operation) will
not `notice' the changes that have taken place in the
interior of the transformed region. Point (ii) of De®ni-
tion 2 guaranties that the result of such an isometric
operation is non-trivial and that the resulting solid is
indeed something new. Owing to the spatial periodicity,
an in®nite number of symmetry-related subregions to a
given one do exist. It is, however, important to bear in
mind that the `boundary-preserving isometry' is not
applied to all the symmetry-equivalent subregions, but
only to a prede®ned subset of them (see below).

To render the answer to question (iii) more under-
standable, we assume that the space group of (I) in Fig. 1
is P1Å (with two molecules in the unit cell). Fig. 4 shows a
segment of the in®nite crystal (I). The chosen subregion
is a slice perpendicular to the drawing plane and the
subdivision of that region into boundary and interior is
indicated there as well. An isometric operation is asso-
ciated with a mirror plane at the middle of the slice
(indicated by the dashed line) and perpendicular to the

drawing plane. The mirroring operation is certainly not a
symmetry operation on the whole crystal. Applying the
mirroring operation only to the indicated slice will map
the `T'-shaped geometrical ®gures (central part of the
molecules) lying in the indicated boundaries onto
themselves. The interior is, however, transformed to
something new, not identical to the indicated original
interior. An in®nite number of translationally equiva-
lent slices to that shown in Fig. 4 exist. If we apply this
boundary-preserving isometry to every second slice we
obtain exactly the `bimolecular' crystal (II) of Fig. 1.

The secret behind the apparently trivial schemes in
Fig. 1 was the existence of a boundary-preserving
isometry and applying this isometric operation to every
second slice will transform (I) into (II) and vice versa.
However, this is not yet the end of the story. We may ask
about the result of applying the same boundary-
preserving isometry only to every nth (n > 2) slice of (I).
The outcome will be a `trimolecular' crystal consisting of
molecules a, b and c, with molecules b and c always in a
1:1 proportion. For n = 3 [i.e. applying the isometry to
every third slice of the in®nite number of symmetry-
equivalent slices of (I)] the outcome is a new trimole-
cular crystal of the molecular composition a1b1c1 built of
a slice of molecules a, followed by a slice of molecules b,
followed by a slice of molecules c, and so on. We may
also apply the boundary-preserving operation to the
equivalent slices at random and the outcome will be a
trimolecular `defect-free' non-crystalline solid (more
precisely: the resulting solid is strictly periodic in two
dimensions and non-periodic in the third dimension). It
should be emphasized that such a `defect-free' solid is
not a solid solution in the usual sense. To summarize: the
existence of a boundary-preserving isometry in a crystal
gives rise to an in®nite number of different solids,
crystalline as well as non-crystalline, with the same
short-range packing.

Fig. 3. Explanation of the concept of
`boundary-preserving isometry'.
In an in®nite crystal three types
(slice, cylinder and sphere) of
®nite regions are schematically
shown. Each region is further
subdivided into an interior region
and a boundary region (horizontal
shadowing). An isometry applied
to a ®nite region will transform
only that region, leaving the rest
of the crystal unchanged. In a
boundary-preserving isometry the
boundary regions are mapped
onto themselves. If the
boundary-preserving isometric
operation is not a symmetry
operation on the whole crystal,
something new will be generated
in the interior and the changes
occurring there will not be
`noticed' by the rest of the crystal.
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The relation between local similarity and boundary-
preserving isometry is now obvious and summarized in
the following theorem:

Theorem 1. A suf®cient condition for local similarity of
solids is the existence of a boundary-preserving
isometry. The degree of local similarity is directly related
to the `width' of the boundary of the subregion to which
the isometry is applied.

Proof. We will give a sketch of a proof rather than a
strict mathematical proof. The proof is based on the
subregion with the largest possible boundary. In
contrast to the simple drawing shown in Figs. 3 and 4,
the outer surface of the subregion to be transformed
by the boundary-preserving isometry can adopt many
different shapes. The choice of the surfaces de®ning
the subregion or the interior is non-unique as well.
Among all subregions which will be transformed by
the boundary-preserving isometry there exists,
however, a subregion whose boundary contains the
boundaries of any other choice. By the `width' of a
boundary we mean the diameter of the largest sphere,
which can still freely move between the inner and
outer surface of the largest boundary. The diameter of
this largest sphere is a lower bound to the truncated
distance R at which the redial distribution matrices of

the original and transformed solids are still indis-
tinguishable.

3. Local similarity and crystal engineering

We have shown that isostructuralism and local similarity
are distinct concepts. Since radial distribution matrices
can be de®ned for any solid, local similarity is a concept
not restricted to crystals. On the other hand, the
descriptors on which isostructuralism is based are
strictly limited to periodic systems. The main conceptual
difference is, however, the theorem formulated in the
last section.

The radial distribution matrices as well as the
descriptors of isostructuralism are a posteriori concepts
applicable to existing data (e.g. for classi®cation
purposes). They cannot be used to predict anything new.
The boundary-preserving isometry is, in contra-
distinction, a design principle that allows the prediction
of new solids. Let us return to Fig. 1. The question
whether (I) and (II) are locally similar or isostructural is,
in our opinion, rather academic. Consider the case
where only molecule a and (I) in Fig. 1 are shown [i.e.
assume that (II), and molecules b and c are not yet
known]. A much more relevant question would then be:

Fig. 4. The special feature of the
schematic crystals shown in Fig. 1
is the existence of a boundary-
preserving isometry. Crystal (I) is
shown. The indicated ®nite region
is a slice perpendicular to the
drawing plane. It is further subdi-
vided into boundary and interior.
The isometry (a mirror plane
indicated by the dashed line) will
map the central `T'-shaped parts
of the geometrical objects onto
themselves.
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do any solids exist, composed of other molecules, which
are locally similar (or isostructural) to (I) and what do
they look like? By detecting the boundary-preserving
isometry in (I) (as shown in Fig. 4) we can now, utilizing
the theorem, predict the existence of an in®nite number
of new solids which are locally similar to (I) [among
these predictions (II) will also be present]. As we will
show later with real chemical systems, this is not an
academic question about chemical curiosities. A typical
scenario encountered in practice: assume that the
monomolecular crystal (I) in Fig. 1 is a commercially
important pigment with exceptionally low solubility and
other valuable properties whose production is heavily
protected by patent. The detection of the boundary-
preserving isometry in that pigment would be the key to
new locally similar pigments with similarly low solubility
and other valuable properties, but since not yet known,
not protected by any patent.

4. Chemical implication of local similarity

The concept of synthons has been introduced recently
(Desiraju, 1995, 1996, 1997; Reddy et al., 1996) as a
qualitative analysis and design tool in molecular crystal
engineering. Synthons, as we interpret them, are struc-
tural units comprised of interacting groups, in a well
de®ned orientation, belonging to molecules in close
contact. A typical example of a (strong) synthon is the
interaction unit generated by two planar amide groups
with a double hydrogen bond between them. Synthons
are the smallest structural units that contain all the
information inherent in the recognition events through
which molecules assemble into solids. As we have
shown, locally similar solids are indistinguishable in
terms of their short-range structure, although they may
differ in their physical properties such as colour or
melting point. It is therefore obvious that locally similar
crystals have exactly the same synthons (not qualita-
tively but in a quantitative sense). For this reason we
propose the term synthomorphism to be used rather
than the currently used term `local similarity'. However,
during the rest of this article we will nonetheless still
adhere to the term local similarity.

Another chemical implication of locally similar solids
are the X-ray powder patterns when the degree of local
similarity, R, is high (say, above 8 AÊ ). The prevailing
opinion is that each crystalline solid has its own char-
acteristic X-ray powder pattern which may be used as a
`®ngerprint' for its identi®cation (West, 1984). Examples
of crystalline solids which contradict this view are not
only interesting from an academic point of view, but may
have far-reaching commercial consequences, as
encountered in the patent law (Rosenberg, 1975). An
accurate de®nition of a chemical invention requires
unique characterization of the objects in terms of
structure. In the case of solids such as pigments, a reci-
tation of certain inherent properties (such as the powder

pattern) may be the only way to express a complex
chemical composition. Claims directed to such compo-
sitions have been referred to as `®ngerprint' claims
(Rosenberg, 1975).

The X-ray powder pattern of a crystal depends on all
interatomic distances, but the large distances contribute
less to the intensities of the peaks. Since locally similar
crystals have the same set of interatomic distances for
distances less than the threshold distance R (or the
degree of local similarity) we may expect that the
powder patterns of crystals with a high degree of local
similarity will be similar as well. For suf®ciently large R
values they may, from the practical point of view (e.g. for
patenting purposes), be even identical.

5. DPP pigments as an example of locally similar crystals

In two recent patents (Hao et al., 1996; Mizuguchi et al.,
1997) it has been noted that some bimolecular mixtures
of symmetrically substituted 1,4-diketopyrrolopyrrols
(DPP), as shown in the ®rst two columns of Scheme (I)
(designated A and B), will form crystals containing both
molecules in a 1:1 proportion [represented by `+' in
Scheme (I)]. Thus, molecules (1) and (2) will form
bimolecular crystals whose X-ray powder pattern differs
from the overlay of the patterns derived from the crys-
tals of the pure substances. The crystal structures of the
pure symmetric molecules (1) [or (7)], (4) and (2) have
been published elsewhere (Mizuguchi et al., 1992, 1993;
Mizuguchi, 1998), but the structures of the mixed crys-
tals composed of (1)+(2) etc. as well as the structures of
the crystals containing the asymmetrically substituted
molecules (3) etc. have not yet been published.

The remarkable phenomenon is that the powder
patterns of these bimolecular crystals [(1)+(2) etc.] are
almost identical to the powder patterns of the mono-
molecular crystal consisting of the asymmetrically
substituted DPP molecules of column C of Scheme (I).
In the following we will focus our attention on the
molecules in the ®rst row of Scheme (I) (i.e. with H and
tert-butyl as substituents). In Fig. 5, three measured
X-ray powder patterns of the bimolecular crystal
comprising the symmetrically substituted molecules (1)
and (2) (lower row in Fig. 5: a0, b0 and c0) and of the
monomolecular crystal of molecule 3 (upper row in Fig.
5: a, b and c) are shown. A list of relative positions and
relative intensities of the main peaks is reported else-
where (Hao et al., 1996). The three measurements (a),
(b), (c) or (a0), (b0), (c0) refer to different samples of the
same pigments and give us a qualitative estimate of the
experimental error. From Fig. 5 it is obvious that the
variations of the powder patterns between the different
samples of the same crystal are comparable to the
differences between the two crystals (1)+(2) and (3). It is
true that an experienced investigator may still detect
some systematic differences between the two sets of
powder patterns (e.g. the two resolved peaks just below
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15� in b0 and c0). However, from the practical viewpoint
of patent registration, where only the few strongest
peaks are documented, such minor differences might be
ignored. Whether the two crystals have, up to the
experimental error, practically the same X-ray powder
pattern, although they contain different molecular
species, or whether they are practically different, is, in
our opinion too subjective to be discussed here. As a
matter of fact, such a degree of similarity has been
classi®ed in the cited patent (Hao et al., 1996) as `prac-
tically identical' and this fact was for us a suf®cient
motivation for further investigations. Simulated powder
patterns (see below) of predicted crystals may well
clarify this point later.

Since single crystals were not available for these
pigments, the routine X-ray structure determination
methods could not be applied. Even an indexing of the
lines of the powder patterns, from which the cell
constants could be deduced, was not possible owing to
the insuf®cient number of well separated lines.

The only way to gain detailed structural information
about the crystals is the computational ab initio
prediction of these crystals based on molecular structure
only. Although we still encounter in recent reviews
(MacDonald & Whitesides, 1994; Wolff, 1996) some
scepticism toward such methods, the ab initio prediction
of possible crystal structures of polar organic molecules
has been shown (Karfunkel & Gdanitz, 1992; Karfunkel
et al., 1993; Payne et al., 1997) to be reliable if performed
properly. The general outline of the method is as follows:
initially, high precision ab initio quantum chemical
calculations (usually Hartree±Fock or density functional
calculations with 6-31G** basis functions) are
performed on the molecules. Based on these results, an

individual force ®eld for each molecule is derived in
which atomic charges appear to be of uppermost
importance. In a second step a large number (several
thousands) of `crude' crystals structures is generated for
each relevant space group using Monte Carlo simulated
annealing methods (Gdanitz, 1992). In a third step the
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many `crude' structures are divided into a few (say
dozens) groups, or clusters, and out of each cluster one
representative structure is chosen for further processing.
Finally, a full (force ®eld) energy minimization with
respect to all degrees of freedom of the crystal is
performed on the chosen `crude' cluster representatives.
Out of the resulting force ®eld optimized structures, we
chose those few with the lowest total energy to represent
the possible crystal structures in which given molecules
can be packed. The packing procedure following the
quantum chemical calculations has been implemented as
a fully automated process in the Cerius2 modelling
package. The ®nal crystal structure elucidation makes
use of the available low-resolution X-ray powder
pattern and is based on the assumption that the crystal
under investigation should correspond to one of the
predicted low-energy crystals. The simulation of the
powder patterns of all predicted crystals should allow
the identi®cation of the corresponding crystal. Owing to
factors such as the approximate nature of the force ®eld

and the neglect of temperature, a corresponding crystal,
should it indeed be among the predicted ones, will
deviate to some extent from the investigated crystal.
Thus, we cannot expect that the simulated and measured
powder patterns will be identical, but we hope that the
degree of similarity is suf®cient for identi®cation
purposes. After having identi®ed a corresponding
crystal, a Rietveld re®nement (Young, 1995) is
performed using the predicted crystal as a starting
structure. A recent example of a crystal structure
elucidation when neither single crystals nor indexable
powder patterns were available is given elsewhere
(Karfunkel et al., 1996).

Applying the outlined computational procedure to
the crystals containing the centrosymmetric molecules
(1)+(2) and the non-centrosymmetric molecule (3), and
using any of the measured powder pattern shown in Fig.
5, yielded the crystal structures shown in Fig. 6 with the
corresponding fractional coordinates reported in
Table 1.

Fig. 5. Powder patterns measured for three different samples of DPP pigments (intensities versus 2�). In the upper row the powder patterns of
three samples (a), (b) and (c) of the crystal containing only molecule (3) are shown. In the lower part three powder patterns of samples (a0), (b0)
and (c0) from the bimolecular crystal containing molecules (1) and (2) in a 1:1 ratio are given.
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The degree of agreement between the simulated and
measured powder patterns was not overwhelming, but in
view of the low resolution and the poor crystallinity of
the samples not surprising. Simulated powder patterns
of the two elucidated structures are shown in Fig. 7.

Except an instrumental broadening taken into
account to re¯ect a real situation, the two simulated
patterns are `noise free'. Up to a small discrepancy at 15�

we consider the two simulated patterns as practically
identical.

Are the two elucidated pigment crystals locally
similar? From the atomic coordinates, the radial
distribution matrices of both crystals can be easily
computed. Up to a distance R = 13.7 AÊ these matrices
are identical, which means that the two crystals are
identical as long as we consider only interatomic
distances below this value. Above this cut-off distance
one can detect differences resulting from HÐH
distances. If one considers only distances between non-
H atoms, differences between the radial distribution
matrices will occur only at distances well above 14 AÊ .
Thus, the degree of local similarity de®ned by the radial
distribution matrices is rather large. The two crystals are
related by a boundary-preserving isometry, as shown in
Fig. 8. The isometric operation is a mirroring at a plane
indicated by the dashed line, which exchanges H atoms
and tert-butyl groups, but maps the phenyl rings onto
themselves.

In the proceeding sections, we have emphasized the
predictive advantage of the concept of boundary-
preserving isometry over a posteriori concepts such as
the radial distribution matrices or the descriptors of
isostructurality. Assuming for an instance that bimole-
cular crystals were unknown, we would have now, after
having detected the boundary-preserving isometry in
the monomolecular pigment crystal, deduced the
bimolecular pigment crystal. Moreover, we can now
predict the existence of trimolecular pigments (crystals
as well as solids which are not crystals in the strict
mathematical sense) comprising molecules (1), (2) and
(3) with the composition (1)n(2)n(3)m, with m being any
number between 0 and in®nity.

The insoluble DPP pigment can be generated from
soluble precursors or so-called `latent pigments'
(Zambounis et al., 1997) by heat treatment or hydrolysis
so that the generation of the free pigment molecules and
the crystallization process take place simultaneously.
Thus, solids of the random type with the composition
(1)n(2)n(3)m mentioned above will be generated when
the precursors of the three molecules (1), (2) and (3) in
actual proportions (which depend on the kinetics of the
decomposition) are hydrolysed simultaneously in the
same reaction vessel. In an earlier patent on mixed DPP
pigments (Rochat et al., 1983), a process for the
production of mixed pigments has been disclosed. The
®nal pigment is made from a solution of a mixture of

Fig. 6. Plot of the elucidated monomolecular (upper part) and bimolecular (lower part) crystals. In both cases the space group is P1Å . Notice that
the unit cell of the bimolecular crystal is exactly twice the size of the monomolecular cell. The circles symbolize the distance threshold for
interatomic distances (�13.7 AÊ ), below which the two crystals are indistinguishable.
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independently synthesized latent pigments by co-
hydrolysis in a common reaction vessel. The disclosed
products had excellent pigmentation properties not
expected for mixtures of different pure pigment crystals.
In the physical mixture of two pure crystalline pigments,
the components show their individual behaviour upon
exposure to light, often resulting in marked changes of
hue as one pigment component fades more rapidly than
the other. Other undesirable properties of a physical
pigment mixture result from phase separation in the
embedding polymer matrix owing to the different
migration characteristics of the individual pigments. The
local crystal similarity exhibited by the DPP pigments
and the concept of boundary-preserving isometry
presented above deliver a logical and consistent expla-

nation for these unexpected properties of what has been
disclosed as `mixtures' in the cited patent. We can also
reverse our argumentation and state that the unex-
pected properties of the disclosed pigment mixture
provide strong evidence for the existence of the
predicted (1)n(2)n(3)m solids.

6. Is local similarity a unique feature of DPP
derivatives?

More than a dozen cases of non-unique X-ray powder
patterns are known or can be deduced from the patent
literature (Hao et al., 1996; Mizuguchi et al., 1997;
Rochat et al., 1983). All are DPP derivatives consisting
of pairs of symmetrically substituted and the corre-
sponding asymmetrically substituted biphenylpyrrolo-
pyrroles. We know no other example. Is it sheer
coincidence exhibited only by DPP derivatives? Can the
dogma of unique powder patterns, although weakened,
still be used for practical patenting purposes? To answer
this question we performed packing calculations, as
described above, on a number of molecules that might
give rise to similar packing as the DPP derivatives. Three
representative molecules are shown in Scheme (II).
Molecules (5)±(10) are homologues of DAWSUP

Fig. 7. The simulated X-ray powder pattern of the Rietveld re®ned
crystals [molecules (1)+(2) upper part and molecule (3) lower part].
The simulation was made with the Cerius2 program assuming some
instrumental broadening. The assumed X-ray source is copper
(wavelength 1.54178 AÊ ), peak shape Lorentzian. This diagram
should be compared to the measured one in Fig. 5.

Fig. 8. Use of the Rietveld re®ned crystal of molecule (3) to explain the
suf®cient condition for local similarity. Here, a slice of the crystal is
shown. An isometric operation which is not a symmetry operation
on the whole (P1Å) crystal is a mirror operation about a plane in the
middle of the slice (dashed line). When the mirror operation is
applied only to the indicated slice, the boundary regions of the slice
are mapped onto themselves, whereas the interior region will
transform a pair of the same molecule to two different molecules.
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(Cambridge Structural Database code) treated as in
Karfunkel et al. (1993). Molecules (16)±(19) are quina-
cridone derivatives. Packing calculations were made for
the bimolecular crystals containing a pair of symme-
trically substituted molecules [®rst two columns in

Scheme (II)] and the monomolecular crystal of the
asymmetrically substituted molecule (third column).
Whether the bimolecular crystal will be formed or
whether the molecules prefer to crystallize as two
distinct monomolecular crystals could not be answered
by the packing calculations, but there is strong evidence
based on the analogy to known DPP crystals that the
bimolecular crystal is the preferred form. Among the

most stable modi®cations there were pairs of crystals
exhibiting local similarity. The packing in all cases was
similar to the elucidated DPP crystals above. The crys-
tals are built up of slices in which the coplanar molecules
are connected in one direction by very strong multiple

hydrogen bonds and in the other direction they are
stacked in a parallel manner (see Fig. 8). The slices are
connected (face to face) in the third direction via
hydrophobic interactions. The extent of non-uniqueness
of the powder patterns is shown in Fig. 9 for the ®rst two
molecular systems, where the simulated powder patterns
and the corresponding difference plot (curve at the
bottom of each box in Fig. 9) are shown. As one can see,
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the powder patterns for the ®rst molecular system (left-
hand side of Fig. 9) consisting of molecules with only two
six-membered rings, are similar but not identical. When
the degree of local similarity is increased as for the
larger molecules with three six-membered rings (right
hand side of Fig. 9), the powder patterns become prac-
tically indistinguishable under normal experimental
conditions.

The results of the packing calculations suggest that
local similarity of crystals could be exhibited by many
elongated molecules bearing substituents at the ends.
The main reason for the lack of examples is that nobody
looked for such a phenomenon. The predicted or
elucidated crystals, presented so far, satisfy the suf®cient
condition of Theorem 1 in a rather strict manner, i.e. the
atom positions of the boundary regions deviate from
their counterpart by 0.1±0.2 AÊ after applying the
boundary-preserving isometric transformation.

With the present search software supplied by the
Cambridge Crystallographic Data Centre it is not yet
possible to perform a systematic search on the crystal
database for candidates satisfying the suf®cient condi-
tion for local crystal similarity. Two groups of indust-
rially important pigments, together with some other

molecules, are shown in Scheme (III). We consider ®rst
the azobenzenes (19).

Crystal structures of molecules with various substi-
tuents have been published by Maginn et al. (1993).
These donor±acceptor molecules have been shown to
adopt a dimer arrangement with parallel molecular
planes. The bulky R substituents prevent, however,
structures that ful®l the minimum condition (Theorem
1) in a strict manner. The most promising candidate
would be that with R1 = R2 = R3 = R4 = H, but for this
molecule no crystal data has been published. The crystal
for the molecule with R1 = methyl, R2 = R3 = R4 = H is
close to ful®lling the condition, as can be deduced from
Fig. 10. The boundary regions of the slice are very
narrow and only a quantitative analysis shows that the
condition is not ful®lled. Another interesting class of
industrially important compounds are the squaraines
(20). Many unsymmetrically substituted squaraines are
mentioned by Law & Bailey (1993), but no crystal data
for these compounds have been published. However, for
the symmetric molecule (21) or similar molecules, for
which crystal data exist (Farnum et al., 1974; Bernstein &
Goldstein, 1988), the relative orientation of the mole-
cules suggests that the unsymmetrical molecules (20)

Fig. 9. Simulated powder patterns of two pairs of locally similar crystals predicted by packing calculations on crystals derived from molecules (10)±
(15). In each box the powder patterns and the difference plot are shown. The two pairs differ by the truncation distance R or the degree of local
similarity.
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may ful®l the condition since the intermolecular inter-
actions have been shown to be governed by strong
interactions between the four-membered rings (Law &
Bailey, 1993). Another known crystal, where the
condition is not strictly (but nearly) ful®lled is orthanilic
acid, (22) (Hall & Maslen, 1967). Using the concept of
synthons we may conclude that the quinacridone deri-
vative (23) might form crystals which ful®l the suf®cient
condition for local similarity. In fact, (23) has the
synthons of the previously predicted quinacridone
derivative (18) and the synthons of orthanilic acid (22).

As a last example we would like to mention the recent
article of Coates et al. (1997), dealing with the interesting
case of molecules (24)±(26). The packing of the mole-
cules in the bimolecular crystal consisting of (24)+(25) is
very similar to the packing of the monomolecular crystal
of (26) and both crystals are triclinic (space group P1Å).

7. Summary

Two new and closely related concepts for solids, termed
`local similarity' (or `synthomorphism') and `boundary-
preserving isometry', have been introduced in a general

manner. Precise mathematical de®nitions (De®nitions 1
and 2) for these concepts have been supplied. The
relation between these new concepts and isostructur-
alism has been discussed. The structures of `locally
similar' solids are indistinguishable if only short-range
interatomic distances below a certain threshold value
are taken into account. A `boundary-preserving
isometry' transforms mathematically a solid to a new
solid with the same short-range structure. A theorem
(Theorem 1), which relates `local similarity' to
`boundary-preserving isometry', has been formulated

and the sketch of a proof has been given. Thus, the
existence of a `boundary-preserving isometry' is a
suf®cient condition for `local similarity' and allows one
to predict the potential existence of in®nitely many
solids, locally similar to a given solid. The chemical
implication of (high degree) local similarity in connec-
tion with the similarity of X-ray powder patterns have
been stated. The manifestation of the presented theo-
retical concepts in nature is given by a series of pigments
derived from DPP. For some pigments, poor quality
X-ray powder patterns do exist. These powder patterns
were not indexable so that a new technique based on the
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ab initio prediction of possible polymorphs with a
subsequent Rietveld re®nement was used for the eluci-
dation of their crystal structures. Extensive ab initio
packing calculations on other molecules have been
made and it has been shown that the phenomenon of

Table 1. Fractional coordinates of Rietveld re®ned
crystals of (1)+(2) and (3)

Molecules (1)+(2), space group P1Å ; lattice: 6.684 36.996 7.278 95.500
90.500 89.855. Molecule (3), space group P1Å ; lattice: 6.673 18.543 7.296
95.300 90.900 90.930.

x y z

Molecules (1)+(2)
O1 0.74179 0.79197 1.09711
O2 0.24614 0.70868 ÿ0.15043
O3 0.22574 0.78333 0.58145
O4 0.76221 0.71587 0.36849
N5 0.74835 0.77563 0.48108
N6 0.23959 0.72377 0.46580
N7 0.24241 0.76861 -0.03541
N8 0.74553 0.73186 0.98518
C9 0.24566 0.73181 -0.02012
C10 0.74228 0.76860 0.96792
C11 0.71627 0.85546 0.82935
C12 0.27163 0.64458 0.11363
C13 0.23472 0.76058 0.45062
C14 0.75322 0.73888 0.49825
C15 0.27518 0.60643 0.09782
C16 0.71270 0.89361 0.84313
C17 0.24761 0.70280 0.3004
C18 0.74032 0.79692 0.64546
C19 0.23999 0.78987 0.12949
C20 0.74796 0.71030 0.82125
C21 0.74746 0.734869 0.6917
C22 0.24048 0.76501 0.25749
C23 0.24636 0.72767 0.17315
C24 0.74158 0.77234 0.77422
C25 0.22661 0.94819 0.18883
C26 0.24513 0.84862 0.31546
C27 0.74284 0.65123 0.63824
C28 0.23525 0.82870 0.14680
C29 0.75272 0.67148 0.80600
C30 0.24038 0.88683 0.33027
C31 0.74761 0.61302 0.62546
C32 0.73574 0.83566 0.66198
C33 0.25217 0.66405 0.28188
C34 0.76676 0.65225 0.96165
C35 0.22121 0.84826 -0.00766
C36 0.23899 0.64420 0.43431
C37 0.74892 0.85518 0.50834
C38 0.21964 0.88648 0.00668
C39 0.76835 0.61407 0.94936
C40 0.74337 0.89329 0.52241
C41 0.24452 0.60608 0.41821
C42 0.26176 0.58714 0.25015
C43 0.72611 0.91254 0.68963
C44 0.22947 0.90672 0.17606
C45 0.75853 0.59348 0.78089
C46 0.11094 0.96526 0.03477
C47 0.44255 0.96414 0.18823
C48 0.12369 0.96339 0.36415
C49 0.14109 0.53609 0.39165
C50 0.17473 0.53594 0.04479
C51 0.48661 0.53747 0.24996
C52 0.26600 0.54921 0.23416

Molecule (3)
O1 0.25918 0.41552 ÿ0.12584
O2 0.23183 0.56740 0.60691
N3 0.24680 0.44785 0.49088
N4 0.25435 0.53581 -0.01039
C5 0.25745 0.46222 0.00467
C6 0.27263 0.28815 0.13731

Table 1 (cont.)

x y z

C7 0.24206 0.52140 0.47590
C8 0.27650 0.21177 0.12133
C9 0.25638 0.40530 0.32536
C10 0.25038 0.57889 0.15475
C11 0.24966 0.52959 0.28271
C12 0.25631 0.45461 0.19805
C13 0.23720 0.89575 0.21553
C14 0.24254 0.69688 0.34147
C15 0.24546 0.65656 0.17229
C16 0.23781 0.77340 0.35651
C17 0.26114 0.32776 0.30649
C18 0.24432 0.69530 0.01767
C19 0.25623 0.28868 0.45960
C20 0.24280 0.77173 0.03242
C21 0.26201 0.21236 0.44319
C22 0.27133 0.17383 0.27424
C23 0.23976 0.81273 0.20231
C24 0.12978 0.92041 0.04486
C25 0.45587 0.92535 0.22906
C26 0.12021 0.92519 0.38467

Fig. 10. A view of a slice of the crystal derived from (19) (R1 = methyl,
R2 = R3 = R4 = H, space group P21/c). The suf®cient condition is not
strictly ful®lled, although the degree of violation is not large. The
chosen view direction is deceptive and may suggest that the
condition is ful®lled via the inversion centre symbolized by the small
circle.
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local similarity may not be restricted to DPP derivatives.
Attempts to detect boundary-preserving isometries in
crystals given in the CSD were made in an unsystematic
manner. Although no example was found which ful®ls
the suf®cient condition in a manner comparable to the
elucidated DPP crystals or the presented theoretical
examples based on ab initio packing, cases violating the
condition in a moderate manner have been reported.
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